

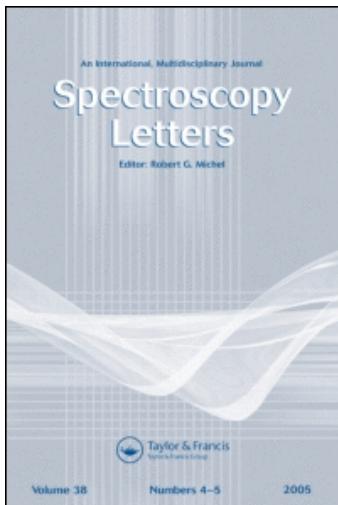
This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

A PRODUCT OPERATOR THEORY OF ^{13}C SPIN-ECHO J-MODULATION NMR SPECTROSCOPY FOR CD_n ($n = 1,2,3$) GROUPS

Azmi Gençten^a; Özden Tezel^a

^a Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey

Online publication date: 31 July 2001

To cite this Article Gençten, Azmi and Tezel, Özden(2001) 'A PRODUCT OPERATOR THEORY OF ^{13}C SPIN-ECHO J-MODULATION NMR SPECTROSCOPY FOR CD_n ($n = 1,2,3$) GROUPS', *Spectroscopy Letters*, 34: 4, 505 — 511

To link to this Article: DOI: 10.1081/SL-100105096

URL: <http://dx.doi.org/10.1081/SL-100105096>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**A PRODUCT OPERATOR THEORY
OF ^{13}C SPIN-ECHO J-MODULATION
NMR SPECTROSCOPY FOR
 CD_n ($n = 1,2,3$) GROUPS**

Azmi Gençten and Özden Tezel

Department of Physics, Faculty of Arts and Sciences,
Ondokuz Mayıs University, Samsun, Turkey

ABSTRACT

Product operator formalism is widely used for analytical description of multiple-pulse NMR experiments for a weakly coupled spin systems. ^{13}C spin-echo J-modulation NMR spectroscopy for CH_n ve CD_n groups is used for identification of different carbon groups. In this study, by using the product operator technique, the analytical description of ^{13}C spin-echo J-modulation NMR spectroscopy for CD_n ($n = 1,2,3$) groups is presented and the experimental identifications of ^{13}C NMR signals of CD_3 , CD_2 and CD groups and also quaternary carbons are discussed.

INTRODUCTION

In order to analyze multiple-pulse NMR experiments applied to large spin systems, a quantum mechanical approach has to be used. In analytical description of multiple-pulse 1D and 2D NMR experiments, the product operator formalism is widely used for weakly coupled spin systems¹⁻⁷. Spin-echo J-modulation is a well known and widely applied technique, *e.g.* for signal assignments in ¹³C NMR spectroscopy and for 2D ¹³C NMR spectroscopy^{8,9}. So, by using spin-echo J-modulation, ¹³C NMR signals coming from CH_n (n=0,1,2,3) groups can be assigned¹⁰. It also can be used for the elimination of ¹³C NMR signals from deuterated solvents and for the ¹³C NMR analysis of partially deuterated compounds¹¹. The product operator description of heteronuclear 2D J-resolved NMR and 2D DEPT J-resolved NMR spectroscopies for the weakly coupled IS_n spin systems (I=1/2, S=1) has been reported elsewhere^{12,13}. In this study, the product operator technique is used for analytical description of ¹³C spin-echo J-modulation NMR spectroscopy for CD_n (n=1,2,3) groups by representing CD_n as IS_n (n=1,2,3, I=1/2, S=1). Then the experimental identifications of ¹³C NMR signals coming from CD₃, CD₂, CD and quaternary carbons are discussed. To the best of our knowledge, this will be the first application of product operator theory to ¹³C spin-echo J-modulation NMR spectroscopy for CD_n (n=1,2,3) groups.

THEORY

Time dependency of the density matrix is given by⁷

$$\sigma(t) = \exp(-iHt)\sigma(0)\exp(iHt) \quad (1)$$

Where *H* is the total Hamiltonian which consists of radio frequency (r.f.) pulse, chemical shift and spin-spin coupling Hamiltonians and $\sigma(0)$ is the density matrix at *t*=0. After employing the Hausdorff formula⁷

$$\begin{aligned} \exp(-iHt)A\exp(iHt) &= A - (it)[H, A] + \frac{(it)^2}{2!}[H, [H, A]] \\ &\quad - \frac{(it)^3}{3!}[H, [H, [H, A]]] + \dots, \end{aligned} \quad (2)$$

the r.f pulse, chemical shift and spin-spin coupling evolution of product operators can easily be obtained^{1,6,7}. The details on the evolution of product operators under these Hamiltonians can be found elsewhere^{1,6,7,12}. At any time during the experiment, the ensemble averaged expectation value of the spin angular momentum, *e.g.* for I_y , is

$$\langle I_y \rangle = \text{Tr}(I_y \sigma(t)). \quad (3)$$

Where $\sigma(t)$ is the density matrix operator calculated from Eq. (1) at any time. As $\langle I_y \rangle$ is proportional to the magnitude of the y magnetization, it represents the signal detected on y axis. So, in order to estimate the FID signal of a multiple-pulse NMR experiment, density matrix operator should be obtained at the end of the experiment.

^{13}C Spin-Echo J-Modulation NMR For CD_n ($n = 1, 2, 3$)

When the simple pulse sequence of spin-echo J-modulation is used, there exists some sources of errors¹⁴. In order to eliminate these sources of errors, a new pulse sequence called ESCORT editing has been developed¹⁴. In this study, for the analytical description of ^{13}C spin-echo J-modulation NMR spectroscopy of CD_n (IS_n) groups, the pulse sequence of ESCORT editing, illustrated in Figure 1, is used. In the pulse sequence τ_0 takes an average value found from average coupling constant J_0 as $\tau_0 = 1/J_0$ and it is kept constant. As seen in Figure 1, the density matrix operator at each stage of the experiment is labeled with numbers.

For **IS** spin system s_I is the density matrix operator at thermal equilibrium and

$$\sigma_1 = I_z. \quad (4)$$

The pulse sequence obviously leads to the following density matrices for each labeled point:

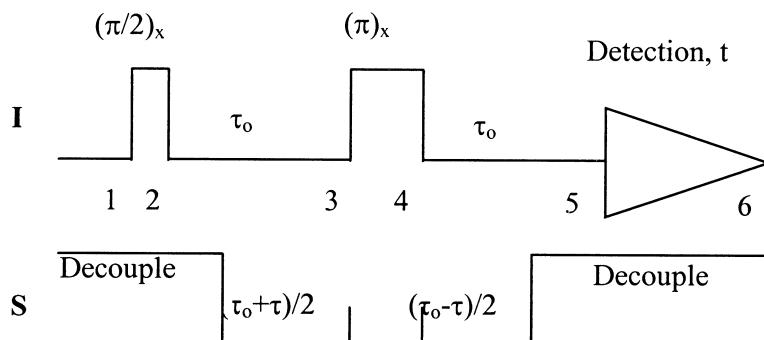


Figure 1. The pulse sequence of ESCORT editing for spin-echo J-modulation NMR spectroscopy¹⁴.

$$\sigma_2 = -I_y \quad (5)$$

$$\sigma_3 = I_x S_z S_{J0} - I_y (1 + S_z^2 (C_{J0} - 1)) \quad (6)$$

$$\sigma_4 = I_x S_z S_{J0} + I_y (1 + S_z^2 (C_{J0} - 1)). \quad (7)$$

In the preceding and following equations $S_{J0} = \sin \pi J(\tau_0 + \tau)$, $C_{J0} = \cos \pi J(\tau_0 + \tau)$, $C_{nJ} = \cos 2\pi n J\tau$ and $C_I = \cos \Omega_I t$. It is assumed that during τ_0 , relaxation and evolution under chemical shift do not exist. The chemical shift evolution take place only during t_1 . Then,

$$\sigma_5 = I_y (1 + S_z^2 (C_J - 1)) \quad (8)$$

and

$$\sigma_6 = I_y (1 + S_z^2 (C_J - 1)) C_I \quad (9)$$

As seen in Figure 1, s_6 is the density matrix operator at the end of the experiment. For **IS** spin system in s_6 only the observable I_y and $I_y S_z^2$ terms are kept. Now, it is necessary to obtain the $Tr(I_y O)$ values of observable product operators indicated by O . For IS_n spin system ($I = 1/2$, $S = 1$, $n = 1, 2, 3$), $Tr(I_y O)$ values for some of the observable product operators were calculated by a computer program and the results are given in Table 1. So using Table 1

$$\langle I_y \rangle = Tr(I_y \sigma_6) = \left(\frac{1}{2} + C_J \right) C_I \quad (10)$$

is obtained.

By using the same pulse sequence for **IS₂ spin system**, we obtain

$$\sigma_6 = I_y (1 + (S_{1z}^2 + S_{2z}^2) (C_J - 1) + S_{1z}^2 S_{2z}^2 (C_J - 1)^2) C_I. \quad (11)$$

Table 1. The Results of the $Tr(I_y O)$ Calculations for Some of the Observable Product Operators in IS_n Spin System ($I = 1/2$, $S = 1$, $n = 1, 2, 3$)

Spin System	Product Operator (O)	$Tr(I_y O)$
<i>IS</i>	I_y	3/2
	$I_y S_z^2$	1
<i>IS₂</i>	I_y	9/2
	$I_y (S_{1z}^2 + S_{2z}^2)$	6
	$I_y S_{1z}^2 S_{2z}^2$	2
<i>IS₃</i>	I_y	27/2
	$I_y (S_{1z}^2 + S_{2z}^2 + S_{3z}^2)$	27
	$I_y (S_{1z}^2 S_{2z}^2 + S_{1z}^2 S_{3z}^2 + S_{2z}^2 S_{3z}^2)$	18
	$I_y S_{1z}^2 S_{2z}^2 S_{3z}^2$	4

Then,

$$Tr(I_y\sigma_6) = \left(\frac{3}{2} + 2C_J + C_{2J}\right)C_I \quad (12)$$

is obtained.

For **IS₃ spin system**, applying the same procedure we obtain

$$\sigma_6 = I_y \left(\begin{array}{l} 1 + (S_{1z}^2 + S_{2z}^2 + S_{3z}^2)(C_J - 1) + (S_{1z}^2 S_{2z}^2 + S_{1z}^2 S_{3z}^2 + S_{2z}^2 S_{3z}^2)(C_J - 1)^2 \\ + S_{1z}^2 S_{2z}^2 S_{3z}^2 (C_J - 1)^3 \end{array} \right) C_I \quad (13)$$

and

$$Tr(I_y\sigma_6) = \left(\frac{7}{2} + 6C_J + 3C_{2J} + C_{3J}\right)C_I \quad (14)$$

DISCUSSION

$Tr(I_y\sigma_6)$ values obtained in the preceding section for IS, IS₂ and IS₃ spin systems represents the FID signals of ¹³C spin-echo J-modulation NMR spectroscopy for CD, CD₂ and CD₃ groups, respectively. $Tr(I_y\sigma_6)$ values can be normalized multiplying by 4/ $Tr(E)$. Here E is the unity product operator for the corresponding spin system. Then the normalized values become as following:

$$Tr(I_y\sigma_6)(IS) = \frac{2}{3} \left(\frac{1}{2} + C_J\right) C_I \quad (15)$$

$$Tr(I_y\sigma_6)(IS_2) = \frac{2}{9} \left(\frac{3}{2} + 2C_J + C_{2J}\right) C_I \quad (16)$$

$$Tr(I_y\sigma_6) = \frac{2}{27} \left(\frac{7}{2} + 6C_J + 3C_{2J} + C_{3J}\right) C_I \quad (17)$$

By adding the $Tr(I_y\sigma_6)$ values of all these three groups, total $Tr(I_y\sigma_6)$ value can be found as:

$$(Tr(I_y\sigma_6))_{\text{tot}} = \left(\begin{array}{l} \frac{2}{3} \left(\frac{1}{2} + C_J\right) + \frac{2}{9} \left(\frac{3}{2} + 2C_J + C_{2J}\right) \\ + \frac{2}{27} \left(\frac{7}{2} + 6C_J + 3C_{2J} + C_{3J}\right) \end{array} \right) C_I. \quad (18)$$

This corresponds to total FID signal for all three groups. This does not include the FID signal of quaternary carbons. By taking $\theta = 2\pi J_0\tau$, FID signals can be estimated for different angles (for different τ values). When the experiment performed at 120° or 240° angles, only the signals coming from quaternary carbons are observed as $(Tr(I_y\sigma_6))_{tot}$ value becomes zero at these angles. For identification of ^{13}C NMR signals of CD, CD_2 and CD_3 groups, the FID signals of ^{13}C spin-echo J-modulation NMR spectroscopy should be obtained at 90° and 180° angles (at corresponding τ values). Then, from their combinations, following results are obtained:

$$I(\text{CD}_2) = 4.5\{(Tr(I_y\sigma_6))_{tot}(90^\circ) + (Tr(I_y\sigma_6))_{tot}(180^\circ)\} \quad (19)$$

$$I(\text{CD}) + \frac{1}{9}I(\text{CD}_3) = 1.5\{(Tr(I_y\sigma_6))_{tot}(90^\circ) - Tr(I_y\sigma_6))_{tot}(180^\circ)\} \quad (20)$$

where $I(\text{CD}_n)$ represents the relative signal intensity of indicated group. The combination in Equation (19) gives the FID signal of CD_2 group only. And the combination in Equation (20) results in the FID signals of CD and CD_3 groups. It is obvious from Equation (20) that CD signals can be easily separated from CD_3 signals as CD_3 signals will have small relative intensities.

In conclusion, product operator theory is applied to ^{13}C spin-echo J-modulation NMR spectroscopy for CD_n ($n=1,2,3$) groups. In order to identify the CD_3 , CD_2 and CD groups and also quaternary carbons, experimental suggestions for ^{13}C spin-echo J-modulation NMR spectroscopy of deuterated molecules were made.

REFERENCES

1. Sfrensen, O.W.; Eich, G.W.; Levitt, M.H.; Bodenhausen, G.; Ernst, R.R. Product Operator Formalism for the Description of NMR Pulse Experiments. *Prog. NMR Spectrosc.* **1983**, *16*, 163.
2. Van de Ven, F.J.M.; Hilbers, C.W. A Simple Formalism for the Description of Multiple-Pulse Experiments. Application to a Weakly Coupled Two-Spin ($I=1/2$) System. *J. Magn. Res.* **1983**, *54*, 512.
3. Packer, K.J.; Wright, K.M. The Use of Single-Spin Operator Basis Sets in the NMR Spectroscopy of Scalar-Coupled Spin Systems. *Mol. Phys.* **1983**, *50*, 797.
4. Shriver, J. Product Operators and Coherence Transfer in Multiple-Pulse NMR Experiments. *Concepts Magn. Res.* **1992**, *4*, 1.
5. Howarth, M.A.; Lian, L.Y.; Hawkes, G.E.; Sales, K.D. Formalisms for the Description of Multiple-Pulse NMR Experiments. *J. Magn. Res.* **1986**, *68*, 433.

6. Ernst, R.R.; Bodenhausen, G.; Wokaun, A. *Principles of Nuclear Magnetic Resonance in One and Two Dimensions*; Oxford: Clarendon Press, 1987.
7. Chandrakumar, N.; Subramanian, S. *Modern Techniques in High Resolution FT NMR*; New York: Springer, 1987.
8. Patt, S.L.; Shoolery, J.N. Attached Proton Test for Carbon-13 NMR. *J. Magn. Res.* **1982**, *46*, 535.
9. Benn, R.; Günther, H. Modern Pulse Methods in High-Resolution NMR Spectroscopy. *Angew. Chem. Int. Ed. Engl.* **1983**, *22*, 350.
10. Jakobsen, H.J.; Sfrensen, O.W.; Brey, W.S.; Kanyha, P. The Magic Angle for the Differentiation Between CH_3 and CH Multiplicities in ^{13}C Spin-Echo J-Modulation Experiments. *J. Magn. Res.* **1982**, *48*, 328.
11. Schmitt, P.; Wesener, J.R.; Günther, H. ^{13}C Spin-Echo Modulation through ^{13}C , ^2H Spin-Spin Coupling: Elimination of Solvent Signals and Analysis of Partially Deuterated Systems. *J. Magn. Res.* **1983**, *52*, 511.
12. Gençten, A.; Köksal, F. A Product Operator Description of 2D-J Resolved NMR Spectroscopy for IS_n Spin System ($I=1/2$, $S=1$). *Spect. Lett.* **1997**, *30* (1), 71.
13. Gençten, A.; Özdogan, T.; Köksal, F. A Product Operator Theory of 2D DEPT J-Resolved NMR Spectroscopy for IS_n Spin System ($I=1/2$, $S=1$). *Spect. Lett.* **1998**, *31* (5), 981.
14. Madsen, J.C.; Bildsøe, H.; Jakobsen, H.J. ESCORT Editing. An Update of the APT Experiment. *J. Magn. Res.* **1986**, *67*, 243.

Received December 2, 1999

Accepted August 1, 2000